US009330476B2

a2 United States Patent 10) Patent No.: US 9,330,476 B2
Shechtman et al. (45) Date of Patent: May 3, 2016
(54) GENERATING A MODIFIED IMAGE WITH 7,826,683 B2* 11/2010 Phillipscocee. GO6T 15/503
ADDITIONAL CONTENT PROVIDED FOR A 0139.850 B2 32012 Maxurell ef al 345/622
1139, axwell et al.
REGION THEREOF 8,139,867 B2 3/2012 Maxwell et al.
8,175,412 B2* 52012 Basri ...ccoceceeeveennnns GO6K 9/34
(75) Inventors: Eli Shechtman, Seattle, WA (US); Dan 382/100
Goldman, Seattle, WA (US) 8,250,481 B2* 82012 Klaric ..o GO6K 9/0063
345/473
. 2003/0099406 Al 5/2003 G iev et al.
(73) Assignee: Adobe Systems Incorporated, San Jose, 2004/0164996 Al §2004 Criminisi et al
CA (US) 2005/0128210 Al 6/2005 Berger
2005/0128211 Al 6/2005 Berger et al.
* o H H H H 2005/0220348 Al 10/2005 Chiu et al.
(*) Notice: Subject. to any dlsclalmer,. the term of this 50060120624 A1 62006 Jojic et al.
patent is extended or adjusted under 35 5006/0284874 Al 12/2006 Wilson
U.S.C. 154(b) by 1136 days. 2006/0285762 Al 12/2006 Sun et al.
2007/0025637 Al 2/2007 Setlur et al.
(21) Appl. No.: 12/454,666 (Continued)
OTHER PUBLICATIONS
(22) Filed: May 21, 2009
‘phpFlicke’ [online] “phpFlickr version 3.1,” Jan. 2011, [retrieved on
(65) Prior Publication Data Jan. 26, 2012]. Retrieved from the Internet: <URL: http://phpflickr.
com/>. 4 pages.
US 2010/0296748 Al Nov. 25,2010 (Continued)
(51) Int.ClL Primary Examiner — Tsung-Yin Tsai
GO6K 9/10 (2006.01) (74) Attorney, Agent, or Firm — Kilpatrick Townsend &
GO6T 11/00 (2006.01) Stockton LLP
(52) US.CL (57) ABSTRACT
C.PC e GO06T 11/00 (2013.01) An image is displayed in a computer system. The image
(58) Field of Classification Search includes contents having a feature visible therein. The con-
None tents have a region thereof defined to be provided with addi-
See application file for complete search history. tional content in generating a modified image. An input is
received comprising a semantic mark to be placed on the
(56) References Cited image. The semantic mark indicates an inside-region part
inside the region and an outside-region part outside the
U.S. PATENT DOCUMENTS region. The additional content for the region is determined
using a patch-based optimization algorithm applied to the
6,018,592 A 1/2000 Shinagawa et al. image. The patch-based optimization algorithm (i) identifies
g%g;’?g g} Z %88 é (Sjlrlf_lbtree et al'al the additional content for the inside-region part based on the
oL inagawa et al. outside-region part and not on an area of the image that the
6,987,520 B2* 1/2006 Criminisicc.. G063T4é /15/3(2) semantic mark does not indicate, and (ii) identifies the addi-
7.088.870 B2* 82006 Perez ... GO6T 11/40 tional content for a remainder of the region without being
345/629 restricted to the outside-region part. The modified image hav-
7,336,851 B1* 2/2008 Cote ...ccoovvvererrennnen. GO6T 11/60 ing the additional content in the region is stored.
382/282
7,760,912 B2 7/2010 Dana et al. 20 Claims, 15 Drawing Sheets
7,773,099 B2 8/2010 Forlines et al. (13 of 15 Drawing Sheet(s) Filed in Color)

200~

S3UBISUOD

ssauaiadwos

US 9,330,476 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2008/0112642 Al* 5/2008 Matsushita GO6T 5/005
382/275
2008/0238942 Al* 10/2008 Sun ..o GO6T 11/60
345/634

2008/0238945 Al
2008/0292162 Al
2009/0141992 Al
2009/0180713 Al
2010/0183242 Al

10/2008 Wakizaka

11/2008 Gering et al.
6/2009 Coulombe et al.
7/2009 Bucha et al.
7/2010 Brand

2010/0287511 Al* 11/2010 Meiercccooeene GO6T 15/20
715/848
2010/0289817 Al* 11/2010 Meier ... GO6T 15/20
345/619

2010/0328352 Al
2011/0182502 Al

12/2010 Shamir et al.
7/2011 Liang

OTHER PUBLICATIONS

‘Web-Archive’ [online] “Creative Commons,” 2010, [retrieved on
Jan. 26, 2012]. Retrieved from Internet: <URL: http://web.archive.
org/web/20100130095204/http:/creativecommons.org/>. 3 pages.
‘Wikipedia’ [online] “Java (programming language),” 2002,
[retrieved on Jan. 27, 2012]. Retrieved from the Internet: <URL:
http://en.wikipedia.org/w/index.php?title=Java_ (programming
language)&oldid=550214>. 7 pages.

‘Wikipedia’ [online]. “OpenGL,” Dec. 2004, [retrieved on Jan. 27,
2012]. Retrieved from the Internet: <URL: http://en.wikipedia.org/
w/index.php?title=OpenGL&oldid=9281664>. 3 pages.
Authorized Officer Simin Baharlou, International Preliminary
Report on Patentability for Application No. PCT/US2010/033771,
dated Nov. 11, 2011, 7 pages.

Baker, S. and Kanade, T. “Limits on Super-Resolution and How to
Break Them.” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, No. 9, Sep. 2002, 36 pages.

Bay et al. “SURF: Speeded Up Robust Features.” Computer Vision
and Image Understanding (CVIU), vol. 110, No. 3, 2008, 14 pages.
Boiman et al. “In Defense of Nearest-Neighbor Based Image Clas-
sification.” Academic Paper, The Weizmann Institute of Science, Jun.
2008, 8 pages.

Chang et al. “Super-Resolution Through Neighbor Embedding.”
Computer Vision and Pattern Recognition, 2004. CVPR 2004. Pro-
ceedings of the 2004 IEEE Computer Society Conference, Jul. 2004,
8 pages.

Chen et al. “Sketch2Photo: Internet Image Montage.” ACM Trans-
actions on Graphics (TOG)—Proceedings of ACM SIGGRAPH Asia
2009, Dec. 2009, 10 pages.

Dale etal. “Image Restoration using Online Photo Collections.” Proc.
IEEE Conference on Computer Vision, Sep. 2009, 8 pages.
Eisemann et al. “Photo Zoom: High Resolution from Unordered
Image Collections.”” SIGGRAPH 2010, Los Angeles, California,
May 2010, 1 page.

HaCohen etal. “Image Upsampling via Texture Hallucination.” IEEE
International Conference on Computational Photography, Mar. 2010,
8 pages.

Han et al. “Multiscale Texture Synthesis”” ACM Transactions on
Graphics, vol. 27, No. 3, Aug. 2008, 8 pages.

Hays and Efros. “Scene Completion Using Millions of Photographs.”
SIGGRAPH 2007, San Diego, California, Aug. 2007, 7 pages.
Johnson et al. “CG2Real: Improving the Realism of Computer Gen-
erated Images Using a Large Collection of Photographs.” IEEE
Transactions on Visualization and Computer Graphics, vol. 17, No. 6,
Sep. 2011, 13 pages.

Kaneva et al. “Infinite Images: Creating and Exploring a Large
Photorealistic Virtual Space.” Proceeding of the IEEE, vol. 98, No. 8,
Aug. 2010, 17 pages.

Kirkpatrick et al. “Optimization by Simulated Annealing.” Science,
vol. 220, No. 4598, May 1983, 10 pages.

Liu et al. “Face Hallucination: Theory and Practice.” International
Journal of Computer Vision (IJCV), vol. 75, No. 1, Oct. 2007, 33

pages.

Lowe, D.G. “Object Recognition from Local Scale-Invariant Fea-
tures.” Computer Vision, 1999. The Proceedings of the Seventh IEEE
International Conference, Kerkyra, Greece, Sep. 1999, 8 pages.
Miranda et al. “New Routes from Minimal Approximation Error to
Principal Components.” Neural Processing Letters, vol. 27, No. 3,
Jun. 2008, 14 pages.

Pandey et al. “Nearest-Neighbor Caching for Content-Match Appli-
cations.” International World Wide Web Conference Committee
(IW3C2), Madrid, Spain, Apr. 2009, 10 pages.

Peterson, J. L. “Computer Programs for Detecting and Correcting
Spelling Errors” Computing Practices: Communications of the
ACM, vol. 23, No, 12, Dec. 1980, 12 pages.

Snavely et al. “Photo Tourism: Exploring Photo Collections in 3D.”
ACM Transactions on Graphics (SIGGRAPH Proceedings), vol. 25,
No. 3, Jul. 2006, 12 pages.

Wang et al. “Factoring Repeated Content Within and Among
Images.” ACM Trans. on Graphics (SIGGRAPH), vol. 27, No. 3,
Aug. 2008, 10 pages.

Webb, A. R. “Chapter 6. Nonlinear Discriminant Analysis—Projec-
tion Methods.” Statistical Pattern Recognition, Jul. 2009, 22 pages.
Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S., Colburn,
A., Curless, B., Salesin, D., and Cohen, M., “Interactive digital pho-
tomontage”, ACM Tirans. Graph. 23, 3, pp. 294-302, dated 2004.
Ashikhmin, M., “Synthesizing natural textures”, in 13D ’0! Proceed-
ings of the 2001 symposium on Interactive 3D graphics, ACM, New
York, NY, USA, pp. 217-226, dated 2001.

Arya, S., Mount, D., Netanyahu, N., Silverman, R., and Wu, A., “An
optimal algorithm for approximate nearest neighbor searching in
fixed dimensions”, in Proc. Fifth Symp. Discrete Algorithms (SODA),
pp. 573-582, dated 1994.

Avidan, S., and Shamir, A., “Seam carving for content-aware image
resizing”, in ACM Trans. Graph. 26, 3, 10, dated 2007.

Bertalmio, M., Sapiro, G., Caselles, V., and Ballester, C., “Image
inpainting”, in SIGGRAPH *00: Proceedings of the 27" annual con-
ference on computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, pp.
417-424, dated 2000.

Bourdev and Brandt, “Robust Object Detection Via Soft Cascade” in
Proceedings from CVPR 2005, IEEE Computer Society, pp. 2236-
2243.

Boykov, Y., Veksler, O., and Zabih, R., “Fast approximate energy
minimization via graph cuts”, in Pattern Analysis and Machine Intel-
ligence, IEEFE Transactions on 23, 11 (Nov.), pp. 1222-1239, dated
2001.

Buades, A., Coll, B., and Morel, J.M. 2005. A non-local algorithm for
image denoising. In Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on, vol. 2, 60-65
vol.

Cho, T. S., Butman, M., Avidan, S., and Freeman, W., “The patch
transform and its applications to image editing”, in Computer Vision
and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on
(June), pp. 1-8, dated 2008.

Criminisi, A., Perez, P. and Toyama, K. 2003. Object removal by
exemplar-based inpainting. Computer Vision and Pattern Recogni-
tion IEEE Computer Society Conference on 2,721.

Criminisi, A., Perez, P., and Toyama, K., “Region filling and object
removal by exemplar-based image inpainting”, in IEEE Trans. Image
Processing 13, 9 (Sep.),p. 1200-1212, dated 2004.

Datar, Immorlica, Indyk, and Mirrokni, “Locality-sensitive hashing
scheme based on p-stable distributions”, in COMPGEOM: Annual
ACM Symposium on Computational Geometry, dated 2004.

Drori, 1., Cohen-or, D., and Yeshurun, H. 2003. Fragment-based
image completion. ACM Transactions on Graphics 22, 303-312.
Efros, A. A., and Freeman, W.T., “Image quilting for texture synthesis
and transfer”, in SIGGRAPH 2001, Computer Graphics Proceed-
ings, ACM Press/ACM SIGGRAPH, E. Fiume, Ed., pp. 341-346,
dated 2001.

Efros, A. A, and Leung, T. K., “Texture synthesis by non-parametric
sampling”, in Computer Vision, IEEFE International Conference on 2,
p. 1033, dated 1999.

Fischler, M.A., and Bolles, R.C. 1981. Random sample consenus: a
paradigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM 24, 6, 381-395.

US 9,330,476 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Fitzgibbon, A., Wexler, Y., and Zisserman, A. 2003. Image-based
rendering using image-based priors. In ICCV ’03: Proceedings of the
Ninth IEEE International Conference on Computer Vision, IEEE
Computer Society, Washington, DC, USA 1176.

Freeman, W. T., Pasztor, E. C., and Y, O. T. C., “Learning low-level
vision”, in International Journal of Computer Vision 40, dated 2000.
Freeman, W., Jones, T., and Pasztor, E. 2002. Example-based super-
resolution. Computer Graphics and Applications, IEEE 22.2 (Mar./
Apr.) 56-65.

Hertzmann, A, Jacobs, C. E., Oliver, N., Curless, B., and Salesin, D.,
“Image analogies”, in SIGGRAPH, pp. 327-340, dated 2001.
Komodakis, N., and Tziritas, G., 2007. Image completion using
efficient belief propagation via priority scheduling and dynamic
pruning /[EEE Transactions on Image Processing 16, 11 2649-2661.
Kopf, J., Fu, C.-W., Cohen-or, D., Deussen, O., Lischinski, D., and
Wong, T.-T. 2007. Solid texture synthesis from 2d exemplars ACM
Transactions on Graphics (Proceedings of SIGGRAPH 2007) 26, 3,
2:1-2:9.

Kumar, N., Zhang, L., and Nayar, S.K., “What is a good nearest
neighbors algorithm for finding similar patches in images?”, in Euro-
pean Conference on Computer Vision, II. pp. 364-378, dated 2008.
Kwatra, V., Essa, L., Bobick, A., Kwatra N., “Texture optimization for
example-based synthesis”, in ACM Trans. Graph., 24(3): pp. 795-
802, dated 2005.

Kwatra V., Schdl, A., Essa, 1., Turk, G., and Bobick, A., “Graphcut
textures: Image and video synthesis using graph cuts”, in ACM Trans-
actions on Graphics, SIGGRAPH 2003 22, Jul. 3, pp. 277-286, dated
2003.

Lefebvre, S., and Hoppe, H., “Parallel controllable texture synthe-
sis”, in ACM Tirans. Graph 24, 3, pp. 777-786, dated 2005.

Liang, L., Liu, C., Xu, Y.-Q., Guo, B., and Shum, H.-Y., “Real-time
texture synthesis by patch-based sampling” in ACM Tians. Graph.
20, 3, pp. 127-150, dated 2001.

Liu, F. and Gleicher, M. “Automatic image retargeting with fisheye-
view warping”, in UIST, ACM, P. Baudisch, M Czerwinski and D.R.
Olsen, Eds., pp. 153-162, dated 2005.

Liu, F,, and Gleicher, M., “Automatic image retargeting with fisheye-
view warping”, in UIST, ACM, P. Baudisch, M. Czerwinski and D.R.
Olsen, Eds., pp. 153-162, dated 2005.

Mikolajezyk, K., and Matas, J. G., “Improving descriptors for fast
tree matching by optimal linear projection”, in Infernational Confer-
ence on Computer Vision, pp. 1-8, dated 2007.

Mount, D.M., and Arya, S., “ANN: A library for approximate nearest
neighbor searching”, dated Oct. 28, 1997.

Pavic, D., Schonefeld, V., and Kobbelt, L. 2006. Interactive image
completion with perspective correction. The Visual Computer 22
(September), 671-681(11).

Rong, G., and Tan, T.-S., “Jump flooding in gpu with applications to
voronoi diagram and distance transform”, in I3D "06. Proceedings of
the 2006 symposium on Interactive 3D graphics and games, ACM,
New York, NY, USA, pp. 109-116, dated 2006.

Rother, C., Kumar, S., Kolmogorov, V., and Blake, A., “Digital tap-
estry”, in IEEE Computer Vision and Pattern Recognition or CVPR,
1, pp. 589-596, dated 2005.

Rother, C., Bordeaux, L., Hamadi, Y., and Blake, A., “Autocollage”,
in ACM Trans. Graph 25, 3, pp. 847-852, dated 2006.

Rubinstein, M., Shamir, A., and Avidan, S., “Improved seam carving
for video retargeting”, in ACM Transactions on Graphics (SIG-
GRAPH) 217, 3, dated 2008.

Setlur, V., Takagi, S., Raskar, R., Gleicher, M., and Gooch, B., “Auto-
matic image retargeting”, in MUM, ACM, M Billinghurst, Ed., vol.
154 of ACM International Conference Proceeding Series, pp. 59-68,
dated 2005.

Shiratori, T., Matsushita, Y., Tang, X., and Kang, S. B., “Video
completion by motion field transfer”, in Computer Vision and Pattern
Recognition, 2006 IEEE Computer Society Conference on Jun. 1, pp.
411-418, dated Jun. 2006.

Simakov, D., Caspi, Y., Shechtman E., and Irani, M., “Summarizing
visual data using bidirectional similarity”, in Proc. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 1-8, dated
2008.

Sun, J., Yuan, L., Jia, J., and Shum, H.-Y. 2005. Image completion
with structure propagation. In SIGGRAPH '05: ACM SIGGRAPH
2005 Papers, ACM New York, NY, USA 861-868.

Tong, X., Zhang, J., Liu, L., Wang, X., Guo, B., and Shum, H.-Y.,
“Synthesis of bidirectional texture functions on arbitrary surfaces”,
in ACM Transactions on Graphics 21, Jul. 3, pp. 665-672, dated Jul.
2002.

Tourapis, A. M., “Enhanced predictive zonal search for single and
multiple frame motion estimation”, in VCIP, SPIE, C. C. J. Kuo, Ed.,
vol. 4671 of Proceedings of SPIE, pp. 1069-1079, dated 2002.
Wang, T., Mei, T., Hua, X.-S,, Liu, X., and Zhou, H.-Q., “Video
collage: A novel presentation of video sequence”, in ICME, IEEE, pp.
1479-1482, dated 2007.

Wang, Y.-S., Tai, C.-L., Sorkine, O., and Lee, T.-Y. 2008. Optimized
scale-and-stretch for image resizing. In SIGGRAPH Asia '08:ACM
SIGGRAPH Asia 2008 papers, ACM, New York, NY, USA 1-8.
Wei, L. Y, and Levoy, M., “Fast texture synthesis using tree-struc-
tured vector quantization”, in SIGGraph-00, pp. 479-488, dated
2000.

Wei, L.-Y., Han, J., Zhou, K., Bao, H., Guo, B., and Shum, H.-Y,,
“Inverse texture synthesis”, in ACM Trans. Graph 27, 3, pp. 19,
dated 2008.

Wexler, Y., Shechtman, E., and Irani, M., “Space-time video comple-
tion”, in Computer Vision and Pattern Recognition, IEEE Computer
Society Conference on 1, pp. 120-127, dated 2004.

Wexler, Y., Shechtman, E., and Irani, M., “Space-time completion of
video”, in IEEE Trans. Pattern Analysis and Machine Intelligence 29,
3, (Mar.), pp. 463-476, dated Mar. 2007.

Wolf, L., Guttmann, M., and Cohen-or, D. 2007. Non-homogeneous
content-driven video-retargeting. In Proceedings of the Eleventh
IEEFE International Conference on Computer Vision (ICCV-07).
Yianilos, P.N., “Data structures and algorithms for nearest neighbor
search in general metric spaces”, in SODA, pp. 311-321, dated 1993.
“AutoCollage” [online] Microsoft Research 2008, [retrieved on Nov.
26, 2008]. Retrieved from he Internet: <URL: http://research.
microsoft.com/autocollage/>.

Barnes, et al., “Supplementary Material for the Generalized
PatchMatch Correspondence Algorithm”, Downloaded from the
internet at http://www.cs.princeton.edu/gfx/pubs/Barnes_ 2010__
TGP/index.php on Sep. 9, 2010, 6 pages.

Barnes, et al., “The Generalized PatchMatch Correspondence Algo-
rithm”, Downloaded from the internet at http://www.cs.princeton.
edu/gfx/pubs/Barnes 2010_ TGP/index.php on Sep. 9, 2010, 14
pages.

Lin, et al. “Random Forests and Adaptive Nearest Neighbors”, Tech-
nical Report No. 1055, Downloaded from the internet on Sep. 7, 2010
at www.stat.wise.edw/Department/techreports/tr1081.pdf; May 29,
2002, 31 pages.

* cited by examiner

U.S. Patent May 3, 2016 Sheet 1 of 15 US 9,330,476 B2

1002

116 114
Z 104 106
Image
S ——
I ————
112 Repository
Input
Device(s) 108
_______“__,./
110

FIG. 1

U.S. Patent May 3, 2016 Sheet 2 of 15 US 9,330,476 B2

coherence completeness

FIG. 2

input

U.S. Patent May 3, 2016 Sheet 3 of 15 US 9,330,476 B2

..$

¢ 3024

FIG. 3A

U.S. Patent May 3, 2016 Sheet 4 of 15 US 9,330,476 B2

B

U.S. Patent May 3, 2016 Sheet 5 of 15 US 9,330,476 B2

e

U.S. Patent May 3, 2016 Sheet 6 of 15 US 9,330,476 B2

U.S. Patent

May 3, 2016

S
S

R

Sheet 7 of 15

22

R

e
o e R i
SRR SRR A
S Y
aE
I

ARt

a3
S
AR,
RRRRRRRRRS
R

US 9,330,476 B2

U.S. Patent May 3, 2016 Sheet 8 of 15 US 9,330,476 B2

U.S. Patent May 3, 2016 Sheet 9 of 15 US 9,330,476 B2

:;:;:;:;.;.;.~.~.;.;:;:;:;:;:~:§~:~:~:~:' SSRoaNaoa ﬁ/ O O OO

US 9,330,476 B2

Sheet 10 of 15

May 3, 2016

U.S. Patent

4008

FiG. 4

U.S. Patent

May 3, 2016 Sheet 11 of 15

US 9,330,476 B2

s

FiG. 5A

US 9,330,476 B2

Sheet 12 of 15

May 3, 2016

U.S. Patent

e

FiG. 58

U.S. Patent May 3, 2016 Sheet 13 of 15 US 9,330,476 B2

i

L i S

U.S. Patent

May 3, 2016

Sheet 14 of 15

R

FIG. 5D

R

US 9,330,476 B2

e

e

e

e

S

U.S. Patent May 3, 2016 Sheet 15 of 15 US 9,330,476 B2

.

Display Image

610
Receive Input
620
\ 4
Determine Additional Content
630
Store Modified Image
640

End

FIG. 6

US 9,330,476 B2

1
GENERATING A MODIFIED IMAGE WITH
ADDITIONAL CONTENT PROVIDED FOR A
REGION THEREOF

RELATED APPLICATIONS

This application is a utility patent application and claims
priority to U.S. Provisional Application Ser. No. 61/215,465,
filed May 6, 2009, entitled “GENERATING A MODIFIED
IMAGE WITH ADDITIONAL CONTENT PROVIDED
FOR A REGION THEREFOR,” the entire contents of which
are incorporated herein by reference.

BACKGROUND

This specification relates to digital image processing.

Some existing image processing techniques use patch-
based techniques for manipulating content. The processing
can involve analyzing or synthesizing patches (e.g., pixel
groups) of image content. For example, patch-based
approaches are used in denoising image and video content;
enhancing image resolution such as performing super-reso-
Iution; compressing image content; changing image aspect
ratio such as by retargeting; reshuffling of image content;
stitching images together; editing image content; and per-
forming texture synthesis. Patch-based methods can have
benefits for synthesis operations. For example, structure, tex-
ture, repetitive patterns and redundancies can be treated.

Techniques have been tried for completing images in dif-
ferent ways, and they can rely on patch-based techniques. For
example, hole-filling techniques exist that attempt to find
content for a hole in an image by analyzing content elsewhere
in the image. Cloning techniques exist where a user manually
can select a source region which is then cloned to a target
region to fill the hole.

SUMMARY

The invention relates to image modification using semantic
information provided by a user.

In a first aspect, a computer-implemented method for gen-
erating a modified image includes displaying an image in a
computer system. The image includes contents that have a
feature visible therein, the contents having a region thereof
defined to be provided with additional content in generating a
modified image. The method includes receiving an input
comprising a semantic mark to be placed on the image, the
semantic mark indicating an inside-region part inside the
region and an outside-region part outside the region. The
method includes determining the additional content for the
region using a patch-based optimization algorithm applied to
the image, the patch-based optimization algorithm (i) identi-
fying the additional content for the inside-region part based
on the outside-region part and not on an area of the image that
the semantic mark does not indicate, and (ii) identifying the
additional content for a remainder of the region without being
restricted to the outside-region part. The method includes
storing the modified image having the additional content in
the region.

Implementations can include any or all of the following
features. The region can include a hole in the image without
the contents and the modified image can be generated in a
hole-filling process. The hole can be filled such that the fea-
ture extends into the region that previously did not contain the
contents. The image can be a photograph and the feature a
physical object, and the region can be defined corresponding
to a structure of the physical object that is missing in the

10

15

20

25

30

35

40

45

50

55

60

65

2

feature. The semantic mark can be made using at least one of:
a line tool, an arc tool, a brush tool, an area-selection tool, and
combinations thereof. A part of the semantic mark can be
placed inside the region to indicate the inside-region part, and
another part of the semantic mark can be placed outside the
region to indicate the outside-region part. An identifying
characteristic can be assigned to the semantic mark, the iden-
tifying characteristic distinguishing the semantic mark from
at least one other semantic mark in the image such that the
patch-based optimization algorithm processes the semantic
marks separately. The semantic marks can cross each other
and the patch-based optimization algorithm can process the
semantic marks separately. The method can further include
receiving another input that defines an additional semantic
constraint for the patch-based optimization process. The
additional constraint can include at least one of: a first search-
space restriction defined for a coherence aspect of the patch-
based optimization algorithm, the first search-space restric-
tion excluding at least a first area of the image from being used
in the additional content; and a second search-space restric-
tion defined for a completeness aspect of the patch-based
optimization algorithm, the second search-space restriction
requiring the additional content to be complete with regard to
a second area of the image indicated by the second search-
space restriction. The outside-region part can be located in
another image separate from the image having the region.

A method can be implemented using a computer program
product tangibly embodied in a tangible program carrier and
including instructions that when executed by a processor
perform a method.

In a second aspect, a graphical user interface includes an
image display area displaying an image in a computer system,
the image comprising contents that have a feature visible
therein, the contents having a region thereof defined to be
provided with additional content in generating a modified
image. The graphical user interface includes an input control
for receiving an input comprising a semantic mark to be
placed on the image, the semantic mark indicating an inside-
region part inside the region and an outside-region part out-
side the region. The additional content for the region is deter-
mined using a patch-based optimization algorithm applied to
the image, the patch-based optimization algorithm (i) identi-
fying the additional content for the inside-region part based
on the outside-region part and not on an area of the image that
the semantic mark does not indicate, and (ii) identifying the
additional content for a remainder of the region without being
restricted to the outside-region part, and the modified image
having the additional content in the region is stored.

Implementations can include any or all of the following
features. The region can include a hole in the image without
the contents and the modified image can be generated in a
hole-filling process. The image can be a photograph and the
feature a physical object, and the region can be defined cor-
responding to a structure ofthe physical object that is missing
in the feature. The input control can include at least one of: a
line tool, an arc tool, a brush tool, an area-selection tool, and
combinations thereof. The input control can associate an
identifying characteristic with the semantic mark, the identi-
fying characteristic distinguishing the semantic mark from at
least one other semantic mark in the image such that the
patch-based optimization algorithm processes the semantic
marks separately.

A graphical user interface can be implemented using a
computer program product tangibly embodied in a computer-
readable storage medium, the computer program product
including instructions that, when executed, generate on a
display device a graphical user interface.

US 9,330,476 B2

3

In a third aspect, a system includes a display device dis-
playing an image, the image comprising contents that have a
feature visible therein, the contents having a region thereof
defined to be provided with additional content in generating a
modified image. The system includes an input device for
receiving an input comprising a semantic mark to be placed
on the image that indicates at least part of the feature, the
semantic mark crossing a border of the region such that an
inside-region part and an outside-region part of the semantic
mark are formed. The system includes an image editor com-
ponent determining the additional content for the region
using a patch-based optimization algorithm applied to the
image, the patch-based optimization algorithm identifying (i)
the additional content for the inside-region part based on the
outside-region part and not on an area of the image that the
semantic mark does not indicate, and (ii) the additional con-
tent for a remainder of the region without being restricted to
the outside-region part.

Implementations can include any or all of the following
features. The input device can include at least one of: a line
tool, an arc tool, a brush tool, an area-selection tool, and
combinations thereof. The input device can associate an iden-
tifying characteristic with the semantic mark, the identifying
characteristic distinguishing the semantic mark from at least
one other semantic mark in the image such that the patch-
based optimization algorithm processes the semantic marks
separately.

Particular embodiments of the subject matter described in
this specification can be implemented to realize one or more
of the following advantages. Image editing can be improved.
Semantics in source images can be preserved by a user mak-
ing inputs to mark one or more features in the images. A user
can mark a feature that extends into a hole or other image
region to be completed, and the mark can be used in selecting
content to fill in content that matches the feature.

The details of one or more embodiments of the subject
matter described in this specification are set forth in the
accompanying drawings and the description below. Other
features, aspects, and advantages of the subject matter will
become apparent from the description, the drawings, and the
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing
executed in color. Copies of this patent or patent application
publication with color drawing(s) will be provided by the
Office upon request and payment of the necessary fee.

FIG. 1 shows an example system that can generate a modi-
fied image.

FIG. 2 schematically shows an example of constraints for
image modifications.

FIGS. 3A-G show another example of image modifica-
tions.

FIG. 4 shows another example of image modifications.

FIGS. 5A-D show another example of image modifica-
tions.

FIG. 6 shows a flowchart of an example method.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

FIG. 1 shows an example system 100 that can generate a
modified image. The system 100 includes a computer device

10

15

20

25

30

35

40

45

50

55

60

65

4

102, which can be any processor-based device including, but
not limited to, a personal computer, a server device, a work-
station or a handheld device.

The system 100 includes a graphical user interface (GUI)
104 that here is generated by the computer device 102. For
example, the GUI 104 can be displayed on a display device
106 connected to the computer device. The GUI 104 is used in
the manipulation if images, such as to show a user an initial
image and/or a modified image.

The system 100 includes at least one repository 108, which
can be implemented using any technology suitable for storing
data, such as in form of a memory, a hard drive, or an optical
disk, to name a few examples. The repository 108 can contain
one or more images, for example images that have not been
modified and/or modified images. The system 100 can make
one or more images in the repository 108 available to a user,
for example by displaying the image(s) in the GUI 104.

The system 100 includes at least one input device 110, such
as a keyboard, mouse, pointing device, trackball, joystick,
track pad, or any other device with which a user can control
and/or respond to the computer device 102. The user can
make an input to affect image processing, such as to apply one
or more constraints for the modification.

The system 100 can be used for any of a number of pur-
poses, such as for modifying an image by performing hole-
filling in an image, which will be used as an illustrative
example below. Other applications include, but are not lim-
ited to, modifying a photograph to add image content corre-
sponding to structure that is missing in the physical object that
is the subject of the photograph. Generally, the modification
involves adding information in an area of the initial image
selected from another area of the image. Here, these and other
operations are performed by an image editor component 112
that can be implemented using processor-executed instruc-
tions stored in a computer readable storage device, such as in
a memory or on a disk. The image editor component 112 can
generate output for display in the GUI 104, such as an image
display area 114 and an input control area 116.

An image modification process can be performed using
patch-based optimization subject to at least a coherence cri-
terion. A patch-based optimization algorithm is described in
WEXLER, Y, SHECHTMAN, E., AND IRANI, M., Space-
time completion of video, IEEE Trans. PAMI Vol. 29, No. 3
(March 2007), 463-476, the entire contents of which are
incorporated herein by reference. Here, a patch-based opti-
mization algorithm that takes into account a user-defined
semantic constraint can include:

The modified image can be initialized with a smooth inter-
polation of the missing region boundary.

A multi-scale algorithm can be initiated where a hole in the
source image is first filled using a coarsest scale and then
interpolated to finer scales in iterations. For example, a Gaus-
sian pyramid can be used where the finest scale corresponds
to the scale of the source image.

The nearest-neighbor process using iteratively repeated
steps of propagation and random search can be performed
under at least one user-specified constraint.

Color votes can be assigned to each pixel according to the
nearest neighbors of all its overlapping patches.

The color votes can be averaged, or clustered and the
largest cluster or mode can be chosen, to obtain a new color.

The previous three steps above can be repeated to improve
the results for a fix number of iterations, or until the image
changes less than a predefined amount, or based on another
termination criterion.

The previous four steps can be repeated as part of the
multi-scale algorithm.

US 9,330,476 B2

5

Nearest-neighbor techniques can be used in the patch-
based optimization. For example, a nearest-neighbor process
can be applied to a patch in the initial image (e.g., to a
predetermined number of pixels such as a 5x5 pixel patch). A
nearest neighbor field can be determined that maps each patch
coordinate in the initial image to a two-dimensional offset
space. The offset represents the adjustment in patch coordi-
nates between the patch in the initial image and the corre-
sponding patch in the modified image. For example, an initial
patch a in the initial image has a nearest-neighbor patch b in
the modified image. The nearest-neighbor field f is then
defined as

Aay=h-a

The offset values of the nearest-neighbor field can be
stored in an array. For example, the array can have the same
dimensions as the initial image.

The patch-based optimization begins with an initial set of
offsets. Next, an iterative update based on the initial offsets is
applied to the nearest-neighbor field. In each iteration, good
patch offsets are propagated to neighboring patches, and a
random search is performed in the neighborhood of the best
offset.

The initial offsets can be generated by randomly assigning
values to the offset field, or by using prior information. In a
hierarchical refinement process using image pyramids, an
initial guess from a previous level can be available for use at
the present level. If the final image resolution has not been
reached, rescaling the current solution estimate to the next
higher resolution in the image pyramid and repeating the
previous four steps as part of the multi-scale algorithm. For
example, a few iterations of the algorithm can be performed
based on a random initialization, and this can then be merged
with the available initial guess before remaining iterations are
performed.

In the iterative process, patch offsets can be examined in
scan order throughout the offset array. Each iteration includes
a propagation step and a random-search step. In the propaga-
tion step, assume that a mapping f(x,y) is being examined.
The nearby mappings f(x-1,y) and f(x,y-1) will be used to
improve the mapping f(xy). For example, if f(x—1,y) is a good
mapping the process will attempt to use it for (X, y). In some
iterations, such as in every other one, the offsets can be
examined in reverse order so that information about offset/
mapping quality is propagated in an opposite direction.

Mappings can be evaluated using a patch distance function.
Any distance function can be used. Some implementations
can use common distance functions for natural images and/or
other data sources including video and three-dimensional
shapes, such as an L, L, or clamped L,, etc., or any other
scalar function. In some implementations, the patch distance
function D is selected such that the optimal offsets for neigh-
boring overlapping patches have a high probability of being
similar. The higher this probability, the faster the algorithm
converges.

In the random-search step, the process attempts to improve
a mapping f(x,y) by randomly searching within the modified
image for a better mapping (i.e., for a target patch whose
distance metric to the source patch is lower). In some imple-
mentations, patches at successively decreasing distance from
the target patch can be evaluated. For example, a uniform
random selection of direction chosen in the field [-1,1]x[-1,
1] is selected, and an exponential function is used to decrease
the distance from a maximum pixel radius w. If a better
mapping is found in the random search, it is substituted for the
current mapping.

10

15

20

25

30

35

40

45

50

55

60

65

6

The iterations are halted when a criterion is met. In some
implementations, the criterion is whether the fraction of
modified offsets falls below a threshold. In some implemen-
tations, a fixed number of iterations is used, for example five.
Performing the patch-based optimization generates the modi-
fied image so that it corresponds to the initial image. For
example, the modified image can be a version of the initial
image where an image hole has been filled, or where content
has been selectively added to a feature. The intermediate
image generated as described above will be an improved
estimate over the initial guess, but may not satisfactorily solve
the image completion problem. The entire process is there-
fore repeated iteratively, using the iterative offset optimiza-
tion in the inner loop, to compute a high quality final solution.

In some implementations, a bidirectional similarity mea-
sure can be used, for example one that finds good correspon-
dences between image regions in both directions (e.g., from a
patch in the initial image to a patch in the modified image, and
vice versa). For example, if the image regions are sufficiently
similar, an existing bi-directional similarity method can con-
verge to a partially continuous solution, with many salient
regions copied to the output with minimal distortions. For
example, most offsets of nearby patches in the source image
may be nearly identical. As another example, if the image
regions are not particularly similar, then the true bi-direc-
tional similarity may likely be close to a similarity of random
patches within the images.

In some implementations, the bidirectional similarity algo-
rithm can include at least the following operations. In a coher-
ence step, the algorithm seeks a nearest-neighbor patch out-
side the hole for every patch inside the hole. In a completeness
step the algorithm seeks a nearest-neighbor patch inside the
hole for every patch outside the hole. These searches generate
nearest-neighbor votes in both directions between the source
and target images. The votes are used to compute the color of
each pixel inside the hole (for example, by averaging or
clustering) in each inner loop iteration. In the context of
user-defined constraints, the completeness term can be used
to define a region that the user wishes to be included inside the
hole, so that the hole is complete with regard to the user-
defined region, but the user does not specify exactly where
inside the hole the algorithm will place the region.

A patch-based optimization algorithm can use a coherence
criterion that relates to whether all patches in the modified
image originate from the initial image. That is, the image
editor component 112 can seck to ensure with regard to the
target image that every patch used to fill a hole therein is one
that exists somewhere in the source image, so that the target
image is coherent with the source image. For example, each
patch in the modified image should have at least one corre-
sponding patch in the initial image. In contrast, if a patch in
the modified image lacks any corresponding patch in the
initial image then the coherence criterion is not satisfied.
Coherence in the modified image can be obtained by process-
ing at multiple scales so that eventually local coherence at
multiple scales gives a globally coherent and natural-looking
output in the target image.

Bidirectional-similarity calculations use a completeness
term in addition to the coherence term. A completeness term
can be used in the algorithm for a fill-in application or in
combination with completion retargeting and/or reshuffling,
to name two examples. In some implementations, a user can
mark a hole in an image, add one or more search space
constraints, specify that the output size will be smaller (i.e.,
retargeting) and specify that some other regions will move
around (i.e., reshuffling) and then the system can run these
together to synthesize the output.

US 9,330,476 B2

7

For example, the completeness term can seek to ensure that
all content from the source image exists somewhere in the
target image. A completeness criterion relates to whether all
patches in the initial image are represented in the modified
image. For example, if the initial image contains multiple
identical patches, the completeness criterion specifies that at
least one of the patches should be found in the modified
image. In contrast, if a unique patch in the initial image lacks
any corresponding patch in the modified image then the com-
pleteness criterion is not satisfied.

A nearest-neighbor algorithm can be performed iteratively
in an inner loop of a bidirectional or unidirectional similarity
algorithm, for example to perform retargeting.

Examples of bidirectional similarity calculations are
described in SIMAKOV, D., CASPL, Y., SHECHTMAN, E.,
and IRANI, M. 2008, Summarizing visual data using bidirec-
tional similarity. In Computer Vision and Pattern Recogni-
tion, CVPR 2008. IEEE Conference.

FIG. 2 schematically shows an example of constraints for
image modifications. Here, an image 200 is an initial image
that shows a piece of land with abuilding on it. The image 200
includes a hole 202 that presently lacks image content. A
modification process is to be performed on the image 200 that
creates a convincing appearance instead of the hole 202.

Three examples of scenarios are illustrated and labeled (a),
(b) and (c). Scenarios (a) and (b) deal exclusively with a
coherence term in the similarity algorithm. This is indicated
by the name “coherence” for the row where these examples
are shown. That is, scenarios (a) and (b) focus on ensuring that
the content ultimately placed in the hole 202 should exist in
the FIG. 200.

Scenario (a) relates to a limitation of the search space. That
is, an area 204 which is indicated by blue color in this example
will be the search space for finding the patches to fill the hole
202. By contrast, an area 206 which is indicated by dark gray
in this example will not be used as search space for the hole
filling procedure. The user can narrow the search space to the
area 204 for one or more reasons. For example, note that the
image 200 includes yellow and red flowers on the ground by
the house. Assume that the user does not want flowers to be
included in the hole 202. Therefore, the user can define the
area 204 so that it does not include the flowers but includes the
rest of the image 200. Thus, it is ensured that the filled hole is
coherent with regard to the image 200 while the flowers are
not included in the hole.

The user can make the definition using any tool, such as by
marking the area 204 and/or 206 when the image 200 is
displayed in the system 100 (FIG. 1). Any other shape of the
area 204 and/or the area 206 can be used.

Scenario (b) relates to multiple-index search space con-
straints. Here, the user places semantic marks 208 and 210
across the boundary of the hole, and a pair of semantic marks
212 such that one part 212A thereof is inside the hole and
another part 212B is outside the hole. The significance of the
semantic marks is that the portion of, say, the mark 208 that is
inside the hole will be filled based on searching only the area
indicated by the portion of the mark 208 that is outside the
hole. One way of interpreting such semantic image comple-
tion is that it allows the user to semantically indicate what
feature(s) near the hole boundary should be extended into the
hole in the completion process. For example, the user may
desire that the corner of the house in the image 200 continue
vertically down into the hole 202. Therefore, the user can
indicate at least a part of the corner with the mark 208. This
ensures that image information for the corner is used as the
search space for the part of the hole indicated by the mark 208,
and moreover prevents information from elsewhere in the

10

15

20

25

30

35

40

45

50

55

60

65

8

image 200, such as from the roof or the flowers, from being
used in filling that portion of the hole. Similarly, the user can
place the mark 210 to indicate that the foundation baseline of
the house extends into the hole.

The pair of semantic marks 212 also relate to defining the
sear space for a portion of the hole. Particularly, the part 212A
indicates an area of the hole and the part 212B defines the
search space to be used for the area indicated by the part
212A. That is, the marks 212 can allow the user to specify that
a particular feature outside the hole 202, such as a group of
flowers, should be the search space for a specific area inside
the hole.

In some implementations, the mark 212B can be placed in
another image that is separate from the image having the hole.
This means that the search space for filling a part of a hole can
include also content outside the image being modified. For
example, assume that similar images of a person exist, and in
one of them the person’s eyes are closed. The user can then
mark one or both eyes as a hole, add a mark inside the hole to
indicate where content is to be placed, and associate the
semantic mark with eyes in another image that are open.

For a remainder of the hole 202 that is not indicated by any
of'the marks 208-12, the algorithm uses the entire image 200
as the search space. That is, an area inside the hole without
semantic marking is not restricted to only a particular seman-
tic search space.

In scenario (c), a completeness aspect is also taken into
account, as indicated by that label on the lower row. That is,
the algorithm ensures not only that the filled hole is coherent
with regard to the image 200, but also that the hole is complete
with regard to at least a portion of the image 200. This corre-
sponds to performing a bidirectional similarity algorithm
while taking into account one or more user-defined semantic
constraints.

First, the user in this example does not limit the search
space for the coherence aspect, as indicated by an areca 214
which here is colored blue and covers the entire image 200.
That is, the algorithm will ensure that all the contents that are
placed inside the hole can be found somewhere in the image
200.

Second, the user wishes to ensure that the yellow flowers in
the image 200 are included in the hole when it is filled with
image content. One option for the user might be to employ a
semantic mark such as the pair 212, with one part inside the
hole and one part indicating the yellow flowers. That would
require the user to specify the exact location inside the hole,
in analogy with how the part 212A was placed in scenario (b).
Here, however, the user indicates the yellow flowers with a
semantic completeness mark 216. The mark 216 instructs the
algorithm that the hole should be made complete with regard
to the portion of the image 200 indicated by the mark. That is,
the algorithm will ensure that all of the contents indicated by
the mark 216 will be found somewhere inside the hole when
it has been filled with content. Thus, the user can selectively
apply a semantic completeness constraint to an image modi-
fication process. Had the user marked the entire image 200
with the mark 216, as opposed to just the yellow flowers, this
would have required the algorithm to place all the contents of
the image 200 inside the hole.

Combinations of scenarios (a), (b) and (¢) can be used. For
example, the mark 208 can be used in combination with the
search space limitation of scenario (a). As another example, at
least one coherence and completeness constraint can be
applied in the same image modification process.

In some implementations, two or more semantic marks can
overlap. For example, if a patch inside the hole is indicated by
two or more semantic marks (e.g., the patch has two indices/

US 9,330,476 B2

9

colors associated with it) the patch should be searched for in
all the regions indicated by the marks.

FIGS. 3A-G show another example of image modifica-
tions. This example describes in more detail how missing
image content for a structure in the subject of a photograph
can be provided with guidance from a user. In FIG. 3A, a tool
300 is shown. For example, the tool 300 can be generated by
the image editor component 112 and its output can be pre-
sented in the GUI 104 (FIG. 1). Image 300A shows an eagle
flying in front of a background that includes a wooden fence.
The modification to be performed here is to remove the eagle
and create a natural-looking image of the fence and the sur-
rounding foliage.

FIG. 3B shows that the user can use a control 304 to
indicate the image content to be removed. Here, the control
304 is a drawing tool and the user has begun tracing around
the edges of the eagle. Any kind of tool can be used for the
marking, such as alasso tool or a color-sensitive tool. Thetool
is generated by the image editor component 112 and is pre-
sented in the input control area 116.

FIG. 3C shows that the eagle has been removed from the
image. Initially, a hole remains in the image where the eagle
previously was visible. In some implementations, a prelimi-
nary hole-filling technique can be applied in an attempt to
eliminate the hole and complete the image. Here, for
example, the preliminary hole-filling technique has managed
to fill in foliage contents in areas that were previously occu-
pied by the eagle image, but the fence is lacking portions of
the upper and lower bars and almost the entire middle post.
This occurs because semantic information regarding the bars
and the post was not available to aid the hole-filling technique
at that point.

In FIG. 3D, however, the user activates a tool 306 that
allows semantic information to be entered by marking impor-
tant features in the image. The tool 306 includes a menu 308
where the user can choose between options for marking a
number of separate semantic features. Here, the options are
labeled as colors (red through black) and the user now
chooses the red option. Any kind of input control can be
included in the tool 306, such as, but not limited to, a line tool,
an arc tool, a brush tool, an area-selection tool, and combi-
nations thereof.

In FIG. 3E, the user begins marking with the tool 306. First,
it is noted that a hole 310 from removing the eagle is now
displayed. The information about the hole’s shape and loca-
tion can be preserved while the preliminary hole-filling tech-
nique is applied. For example, showing the hole 310 can aid
the user in performing the proper markings on the image.
Here, the user draws a line 312 using the tool 306. The user
draws the line 312 so that it essentially coincides with the
fencepost that is not affected by the hole 310. The line 312 is
here displayed using red color because the user chose “Red”
in the menu.

FIG. 3F shows that the user can enter one or more addi-
tional marks in the image, using the same or a different
marking tool. Here, another fencepost has been marked with
a line 314, and the center fencepost, of which only a small
amount remained after removing the eagle, has been marked
using a line 316. The lines 312, 314 and 316 are all red
because they were made with the same marking tool labeled
with that color. Similarly, another marking tool (here labeled
green) is used to mark the upper and lower bars with lines 318
and 320, respectively. Thus, the user has marked features of
interest (e.g., the fenceposts and bars) and labeled them dif-
ferently so that they are handled separately.

Based on the marked areas, the image completion is then
carried out. Particularly, the hole from the eagle is filled using

20

25

35

40

45

65

10

the information that the user has provided. Here, for example,
the bar 318 has an inside-region part 322 and an outside-
region part 324. That is, the inside-region part 322 is the part
of the line 318 that is inside the hole and the outside-region
part 324 is the part of the line 318 that is outside the hole.
When seeking image content to fill the inside-region part 322
(e.g., patches that can be applied at those locations to fill the
hole), the system will look only to the outside-region part 324
and to any other areas marked with the same tool. Here, that
includes the line 320 because it too is green. In contrast, the
remainder of the image that was not marked with the green
tool, such as the background foliage and the fenceposts, will
not be used in filling the inside-region part 322. The parts of
the line 320 that cross through the hole will be filled based on
the same information.

Similarly, the line 316 has an inside-region part 326 that
will be filled based on the portions marked with the red tool
that are outside the hole, without referring to any area that is
not marked with the red tool. Here, the line 312 is entirely
outside the hole and therefore will act as a source of informa-
tion for the hole filling. The line 316, in contrast, will be
subject to hole filling for most of its length except for a
remaining piece outside the hole at its lower end.

The image editor tool 110 (FIG. 1) can allow markings
from tools to be partially overlapping. For example, the lines
318 and 320 overlap with the line 312. Because the marks
were made with different tools, the image completions for
their respective areas are handled separately and do not inter-
fere.

FIG. 3G shows a resulting image 330. Here, the image
editor tool 110 (FIG. 1) has completed the hole by drawing
image information from the areas indicated by the user’s
markings. The image completion can be performed using a
patch-based optimization algorithm, as described above. For
example, patches from the outside-region part can be ran-
domly distributed in the inside-region part, and this mapping
can then be refined using iterative phases of good-mapping
propagation and random mappings. The remaining parts of
the hole that are not included in any of the user’s markings are
thereafter filled using the same patch-based optimization
algorithm. That is, the same hole-filling technique is applied
throughout the hole, but for the marked areas its draws refer-
ence only from the other corresponding marked area(s).

FIG. 4 shows another example of image modifications.
Here, a photograph of the second temple of Hera at Paestum
is shown in image 400A. There is no hole in the image to be
filled; rather, the temple is missing some structure and the
user wants the system (e.g., the image editor component 110
in FIG. 1) to perform image modification to address this
situation.

As shown in image 400B, the user can make one or more
markings to define semantics for how the missing structure
should be created. Here, the user creates a line 402 to define
where image information for restoring the raking cornice
should be obtained. Particularly, the line 402 is drawn along
the piece of the structure that is intact and extends into the area
where material is missing in the physical structure. Thus, the
system will look only to the intact structure piece, because it
has been marked by the user, to find image patches for re-
creating the part of the physical structure that is missing.
Similarly, the user creates a marking 404 for portions of the
pediment that are missing in the physical object, and a line
406 for missing pieces of the cornice.

Image 400C shows the result of the image modification. As
can be seen, the raking cornice, the pediment and the cornice
have been restored by adding image patches to those places
where physical structure was missing. Because the respective

US 9,330,476 B2

11

information sources for these areas had been semantically
defined by the user, the result looks natural and plausible.

FIG. 5A shows another example of image modification.
Here, an initial image 500 is a photograph of a garden with a
lawn, a sundial pedestal and a stone wall in the background
that has a portal in it. The user in this example wishes to
remove the pedestal and the portal, and generate a natural-
looking modified image.

FIG. 5B shows that the user has removed the pedestal and
the portal, leaving a hole 502. The purpose of the image
modification is to select content elsewhere in the image in an
organized way and fill the hole 502 with that content. FIG. 5C
shows that the user can enter one or more marks to define the
search space for the modification process. Here, the user
enters a mark 504 to guide the hole-filling process for an edge
of the wall that is to continue at the top of the hole. The user
enters amark 506A inside the hole and a corresponding mark
506B outside the hole. The mark 506B indicates where the
image content for the area of the mark 506 A will be selected.
Similarly, user enters a mark S08A inside the hole and a
corresponding mark 508B outside the hole. The mark 508B
indicates where the image content for the area of the mark
508A will be selected. The user employs separate marking
tools for the respective marks, as indicated by the different
colors of the marks.

The content selection for filling the hole is performed using
a patch-based optimization algorithm aided by the semantic
guidance the user has created by entering the marks. FIG. 5D
shows a modified image 510 that results after the patch-based
optimization algorithm. Here, content has been filled into the
hole 502 corresponding to all of the marks 504, 506A and
508A, as well as in a remainder of the hole 502 that the user
did not mark, which remainder the patch-based optimization
algorithm fills by referring to any area of the image, as guided
by the propagation phase and the random search phase
therein.

FIG. 6 shows an example method 600 of generating a
modified image. The method 600 can be performed by a
processor executing instructions stored in a tangible com-
puter-readable medium, for example in the system 100 (FIG.
1). One or more additional steps can be performed.

Step 610 involves displaying an image in a computer sys-
tem. For example, any or all of the images 200, 302A and
400A can be displayed in the GUI 104 (FIG. 1). The image
includes contents that have a feature visible therein, the con-
tents having a region thereof defined to be provided with
additional content in generating a modified image. For
example, the images 200 and 302 A can have holes defined in
them, such as from removing some image content. As another
example, structure can be missing from the physical object
that is shown in the image, such as in the image 400A.

Step 620 involves receiving an input that includes a seman-
tic mark to be placed on the image that indicates at least part
of'the feature. For example, the user can employ the tool 306
using the input device 110 to make any of the marks 208, 210,
212, 312-16, 320-22 and 402-06. The semantic mark indi-
cates an inside-region part inside the region and an outside-
region part outside the region. For example, the marks 208,
210, 212, 312-16, 320-22 and 402-06 are placed so that they
indicate respective inside-region parts and outside-region
parts of the respective holes or regions of missing structure.
The outside-region part can be located in the same image or in
another image.

Step 630 involves determining the additional content for
the region using a patch-based optimization algorithm
applied to the image. For example, the image editor compo-
nent 110 (FIG. 1) can apply a patch-based optimization algo-

5

10

15

20

25

30

35

40

45

50

55

60

65

12

rithm. The patch-based optimization algorithm identifies the
additional content for the inside-region part based on the
outside-region part and not on an area of the image that the
semantic mark does not indicate. The patch-based optimiza-
tion algorithm identifies the additional content for a remain-
der of the region without being restricted to the outside-region
part.

Step 640 involves storing the modified image having the
additional content in the region. For example, any or all of the
images 330 or 400C, or the image that results when the hole
202 has been filled in the image 200, can be stored in the
repository 108 (FIG. 1).

Embodiments of the subject matter and the operations
described in this specification can be implemented in digital
electronic circuitry, or in computer software, firmware, or
hardware, including the structures disclosed in this specifica-
tion and their structural equivalents, or in combinations of one
or more of them. Embodiments of the subject matter
described in this specification can be implemented as one or
more computer programs, i.., one or more modules of com-
puter program instructions, encoded on a computer storage
medium for execution by, or to control the operation of, data
processing apparatus. Alternatively or in addition, the pro-
gram instructions can be encoded on an artificially-generated
propagated signal, e.g., a machine-generated electrical, opti-
cal, or electromagnetic signal, that is generated to encode
information for transmission to suitable receiver apparatus
for execution by a data processing apparatus. A computer
storage medium can be, or be included in, a computer-read-
able storage device, a computer-readable storage substrate, a
random or serial access memory array or device, or a combi-
nation of one or more of them. Moreover, while a computer
storage medium is not a propagated signal, a computer stor-
age medium can be a source or destination of computer pro-
gram instructions encoded in an artificially-generated propa-
gated signal. The computer storage medium can also be, or be
included in, one or more separate physical components or
media (e.g., multiple CDs, disks, or other storage devices).

The operations described in this specification can be imple-
mented as operations performed by a data processing appa-
ratus on data stored on one or more computer-readable stor-
age devices or received from other sources.

The term “data processing apparatus” encompasses all
kinds of apparatus, devices, and machines for processing
data, including by way of example a programmable proces-
sor, a computer, a system on a chip, or multiple ones, or
combinations, of the foregoing The apparatus can include
special purpose logic circuitry, e.g., an FPGA (field program-
mable gate array) or an ASIC (application-specific integrated
circuit). The apparatus can also include, in addition to hard-
ware, code that creates an execution environment for the
computer program in question, e.g., code that constitutes
processor firmware, a protocol stack, a database management
system, an operating system, a cross-platform runtime envi-
ronment, a virtual machine, or a combination of one or more
of them. The apparatus and execution environment can real-
ize various different computing model infrastructures, such
as web services, distributed computing and grid computing
infrastructures.

A computer program (also known as a program, software,
software application, script, or code) can be written in any
form of programming language, including compiled or inter-
preted languages, declarative or procedural languages, and it
can be deployed in any form, including as a stand-alone
program or as a module, component, subroutine, object, or
other unit suitable for use in a computing environment. A
computer program may, but need not, correspond to a filein a

US 9,330,476 B2

13

file system. A program can be stored in a portion of a file that
holds other programs or data (e.g., one or more scripts stored
in a markup language document), in a single file dedicated to
the program in question, or in multiple coordinated files (e.g.,
files that store one or more modules, sub-programs, or por-
tions of code). A computer program can be deployed to be
executed on one computer or on multiple computers that are
located at one site or distributed across multiple sites and
interconnected by a communication network.

The processes and logic flows described in this specifica-
tion can be performed by one or more programmable proces-
sors executing one or more computer programs to perform
actions by operating on input data and generating output. The
processes and logic flows can also be performed by, and
apparatus can also be implemented as, special purpose logic
circuitry, e.g.,an FPGA (field programmable gate array) or an
ASIC (application-specific integrated circuit).

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read-only memory or a
random access memory or both. The essential elements of a
computer are a processor for performing actions in accor-
dance with instructions and one or more memory devices for
storing instructions and data. Generally, a computer will also
include, or be operatively coupled to receive data from or
transfer data to, or both, one or more mass storage devices for
storing data, e.g., magnetic, magneto-optical disks, or optical
disks. However, a computer need not have such devices.
Moreover, a computer can be embedded in another device,
e.g., a mobile telephone, a personal digital assistant (PDA), a
mobile audio or video player, a game console, a Global Posi-
tioning System (GPS) receiver, or a portable storage device
(e.g., auniversal serial bus (USB) flash drive), to name just a
few. Devices suitable for storing computer program instruc-
tions and data include all forms of non-volatile memory,
media and memory devices, including by way of example
semiconductor memory devices, e.g., EPROM, EEPROM,
and flash memory devices; magnetic disks, e.g., internal hard
disks or removable disks; magneto-optical disks; and CD-
ROM and DVD-ROM disks. The processor and the memory
can be supplemented by, or incorporated in, special purpose
logic circuitry.

To provide for interaction with a user, embodiments of the
subject matter described in this specification can be imple-
mented on a computer having a display device, e.g., a CRT
(cathode ray tube) or LCD (liquid crystal display) monitor,
for displaying information to the user and a keyboard and a
pointing device, e.g., amouse or a trackball, by which the user
can provide input to the computer. Other kinds of devices can
be used to provide for interaction with a user as well; for
example, feedback provided to the user can be any form of
sensory-feedback, e.g., visual feedback, auditory feedback,
or tactile feedback; and input from the user can be received in
any form, including acoustic, speech, or tactile input. In addi-
tion, a computer can interact with a user by sending docu-
ments to and receiving documents from a device that is used
by the user; for example, by sending web pages to a web
browser on a user’s client device in response to requests
received from the web browser.

Embodiments of the subject matter described in this speci-
fication can be implemented in a computing system that
includes a back-end component, e.g., as a data server, or that
includes a middleware component, e.g., an application server,
or that includes a front-end component, e.g., a client com-
puter having a graphical user interface or a Web browser

20

25

40

45

60

14

through which a user can interact with an implementation of
the subject matter described in this specification, or any com-
bination of one or more such back-end, middleware, or front-
end components. The components of the system can be inter-
connected by any form or medium of digital data
communication, e.g., a communication network. Examples
of communication networks include a local area network
(“LAN”) and a wide area network (“WAN™), an inter-network
(e.g., the Internet), and peer-to-peer networks (e.g., ad hoc
peer-to-peer networks).

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In some embodi-
ments, a server transmits data (e.g., an HTML page) to a client
device (e.g., for purposes of displaying data to and receiving
user input from a user interacting with the client device). Data
generated at the client device (e.g., a result of the user inter-
action) can be received from the client device at the server.

While this specification contains many specific implemen-
tation details, these should not be construed as limitations on
the scope of the invention or of what may be claimed, but
rather as descriptions of features specific to particular
embodiments of the invention. Certain features that are
described in this specification in the context of separate
embodiments can also be implemented in combination in a
single embodiment. Conversely, various features that are
described in the context of a single embodiment can also be
implemented in multiple embodiments separately or in any
suitable subcombination. Moreover, although features may
bedescribed above as acting in certain combinations and even
initially claimed as such, one or more features from a claimed
combination can in some cases be excised from the combi-
nation, and the claimed combination may be directed to a
subcombination or variation of a subcombination.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain circum-
stances, multitasking and parallel processing may be advan-
tageous. Moreover, the separation of various system compo-
nents in the embodiments described above should not be
understood as requiring such separation in all embodiments,
and it should be understood that the described program com-
ponents and systems can generally be integrated together in a
single software product or packaged into multiple software
products.

Thus, particular embodiments of the invention have been
described. Other embodiments are within the scope of the
following claims. In some cases, the actions recited in the
claims can be performed in a different order and still achieve
desirable results. In addition, the processes depicted in the
accompanying figures do not necessarily require the particu-
lar order shown, or sequential order, to achieve desirable
results. In certain implementations, multitasking and parallel
processing may be advantageous.

What is claimed is:

1. A computer-implemented method comprising:

displaying, by a computer system, an image having a

region to which content is to be provided in generating a
modified image and an outside region, wherein the
region has a first sub-region and a second sub-region,
wherein the outside region at least partially surrounds
the region;

US 9,330,476 B2

15

receiving an input comprising a semantic mark to be placed
on the image, the semantic mark indicating the first
sub-region and the outside region;
determining, by the computer system applying a patch-
based optimization algorithm to the image, first content
to be added to the first sub-region and second content to
be added to the second sub-region adjacent to the first
sub-region, wherein determining the first content and the
second content comprises:
restricting, based on the semantic mark indicating the
first sub-region and the outside region, the patch-
based optimization algorithm to using the outside
region for determining the first content such that an
area of the image other than the outside region is not
used to identify the first content,

identifying, using the patch-based optimization algo-
rithm, the first content based on the outside region to
which the patch-based optimization algorithm is
restricted and not based on the area of the image that
the semantic mark does not indicate, and

identifying the second content for the second sub-region
without being restricted to the outside region; and

generating the modified image by modifying the image to

include the identified first content in the first sub-region

and the identified second content in the second sub-

region.

2. The method of claim 1, wherein the first sub-region
comprises a hole in the image without the content and
wherein the modified image is generated in a hole-filling
process that includes the patch-based optimization algorithm.

3. The method of claim 2, wherein the hole is filled such
that a feature from the outside region extends into the first
sub-region that lacks the content prior to performing the
hole-filling process.

4. The method of claim 1, wherein the image is a photo-
graph depicting a physical object, and wherein the region is
defined corresponding to a structure of the physical object
that is missing from the image.

5. The method of claim 1, wherein the semantic mark is
made using at least one of a line tool, an arc tool, a brush tool,
an area-selection tool, or combinations thereof.

6. The method of claim 1, wherein the input specifies that
a first part of the semantic mark is placed inside the region to
indicate the first sub-region and a second part of the semantic
mark is placed outside the region to indicate the outside
region.

7. The method of claim 1, wherein an identifying charac-
teristic is assigned to the semantic mark, the identifying char-
acteristic distinguishing the semantic mark from an addi-
tional semantic mark in the image such that the patch-based
optimization algorithm the semantic mark separately from
the additional semantic mark.

8. The method of claim 7, wherein the semantic mark and
the additional semantic mark cross each other and the patch-
based optimization algorithm the semantic mark separately
from the additional semantic mark.

9. The method of claim 1, further comprising receiving an
additional input that defines an additional semantic constraint
for the patch-based optimization algorithm.

10. The method of claim 9, wherein the additional semantic
constraint includes at least one of:

a first search-space restriction defined for a coherence
aspect of the patch-based optimization algorithm, the
first search-space restriction excluding at least a first
area of the image from being used in the content to be
added to the first sub-region; and

10

15

20

25

30

35

40

45

50

55

60

65

16

a second search-space restriction defined for a complete-
ness aspect of the patch-based optimization algorithm,
the second search-space restriction requiring the content
to be complete with regard to a second area of the image
indicated by the second search-space restriction.

11. The method of claim 1, further comprising receiving an
additional input comprising an additional semantic mark that
indicates an additional region from an additional image sepa-
rate from the image, wherein determining the first content
further comprises:

restricting, based on the additional semantic mark indicat-
ing the additional region, the patch-based optimization
algorithm to using the additional region for determining
the first content such that an area of the additional image
other than the additional region is not used to identify the
first content, and

identifying, using the patch-based optimization algorithm,
the first content based on the outside region to which the
patch-based optimization algorithm is restricted and not
based on the area of the additional image that the addi-
tional semantic mark does not indicate.

12. A computer system comprising:

a processing device; and

a non-transitory computer-readable medium, wherein the
processing device is configured to execute instructions
stored on the non-transitory computer-readable medium
and thereby perform operations comprising:
displaying an image having a region to which content is

to be provided in generating a modified image and an
outside region, wherein the region has a first sub-
region and a second sub-region, wherein the outside
region at least partially surrounds the region;
receiving an input comprising a semantic mark to be
placed on the image, the semantic mark indicating the
first sub-region and the outside region;
determining, by applying a patch-based optimization
algorithm to the image, first content to be added to the
first sub-region and second content to be added to the
second sub-region adjacent to the first sub-region,
wherein determining the first content and the second
content comprises:
restricting, based on the semantic mark indicating the
first sub-region and the outside region, the patch-
based optimization algorithm to using the outside
region for determining the first content such that an
area of the image other than the outside region is
not used to identify the first content,
identifying, using the patch-based optimization algo-
rithm, the first content based on the outside region
to which the patch-based optimization algorithm is
restricted and not based on the area of the image
that the semantic mark does not indicate, and
identifying the second content for the second sub-
region without being restricted to the outside
region; and
generating the modified image by modifying the image
to include the identified first content in the first sub-
region and the identified second content in the second
sub-region.

13. The computer system of claim 12, wherein the first
sub-region comprises a hole in the image without the content
and wherein processing device is configured for generating
the modified image by executing a hole-filling process that
includes the patch-based optimization algorithm.

14. The computer system of claim 13, wherein the hole is
filled such that a feature from the outside region extends into

US 9,330,476 B2

17

the first sub-region that lacks the content prior to the hole-
filling process being executed.

15. The computer system of claim 12, wherein the image is
a photograph depicting a physical object, and wherein the
region is defined corresponding to a structure of the physical
object that is missing from the image.

16. The computer system of claim 12, wherein the input
specifies that a first part of the semantic mark is placed inside
the region to indicate the first sub-region and a second part of
the semantic mark is placed outside the region to indicate the
outside region.

17. A non-transitory computer-readable medium storing
program instructions that are executable by a processing
device, the program instructions comprising:

program instructions for displaying an image having a

region to which content is to be provided in generating a
modified image and an outside region, wherein the
region has a first sub-region and a second sub-region,
wherein the outside region at least partially surrounds
the region;

program instructions for receiving an input comprising a

semantic mark to be placed on the image, the semantic
mark indicating the first sub-region and the outside
region;

program instructions for determining, by applying a patch-

based optimization algorithm to the image, first content

to be added to the first sub-region and second content to

be added to the second sub-region adjacent to the first

sub-region, wherein determining the first content and the

second content comprises:

restricting, based on the semantic mark indicating the
first sub-region and the outside region, the patch-
based optimization algorithm to using the outside
region for determining the first content such that an
area of the image other than the outside region is not
used to identify the first content,

identifying, using the patch-based optimization algo-
rithm, the first content based on the outside region to
which the patch-based optimization algorithm is

w

10

15

20

25

35

18

restricted and not based on the area of the image that
the semantic mark does not indicate, and
identifying the second content for the second sub-region
without being restricted to the outside region; and
program instructions for generating the modified image by
modifying the image to include the identified first con-
tent in the first sub-region and the identified second
content in the second sub-region.

18. The non-transitory computer-readable medium of
claim 17, wherein an identifying characteristic is assigned to
the semantic mark, the identifying characteristic distinguish-
ing the semantic mark from an additional semantic mark in
the image such that the patch-based optimization algorithm
the semantic mark separately from the additional semantic
mark.

19. The non-transitory computer-readable medium of
claim 18, wherein the semantic mark and the additional
semantic mark cross each other and program instructions
further comprise program instructions for executing the
patch-based optimization algorithm such that the patch-based
optimization algorithm the semantic mark separately from
the additional semantic mark.

20. The non-transitory computer-readable medium of
claim 17, further comprising program instructions for receiv-
ing an additional input that defines an additional semantic
constraint for the patch-based optimization algorithm,
wherein the additional semantic constraint includes at least
one of:

a first search-space restriction defined for a coherence
aspect of the patch-based optimization algorithm, the
first search-space restriction excluding at least a first
area of the image from being used in the content to be
added to the first sub-region; and

a second search-space restriction defined for a complete-
ness aspect of the patch-based optimization algorithm,
the second search-space restriction requiring the content
to be complete with regard to a second area of the image
indicated by the second search-space restriction.

#* #* #* #* #*

